On Fano Foliations

نویسنده

  • CAROLINA ARAUJO
چکیده

In this paper we address Fano foliations on complex projective varieties. These are foliations F whose anti-canonical class −KF is ample. We focus our attention on a special class of Fano foliations, namely del Pezzo foliations on complex projective manifolds. We show that these foliations are algebraically integrable, with one exceptional case when the ambient space is Pn. We also provide a classification of del Pezzo foliations with mild singularities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sink Location Service Based on Fano Plane in Wireless Sensor Networks

Sink location is considered as a basic service in geographic routing in wireless sensor networks. Obtaining the location of sink node by source node using an efficient method with low complexity has always been a challenging issue in research. In this paper, a sink location algorithm based on Fano plane is proposed. The research challenge is how to ensure the intersection of two SLQ (Location Q...

متن کامل

Identification of Riemannian foliations on the tangent bundle via SODE structure

The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Stability of Holomorphic Foliations with Split Tangent Sheaf

We show that the set of singular holomorphic foliations on projective spaces with split tangent sheaf and good singular set is open in the space of holomorphic foliations. We also give a cohomological criterion for the rigidity of holomorphic foliations induced by group actions and prove the existence of rigid codimension one foliations of degree n − 1 on P for every n ≥ 3.

متن کامل

Foliations with Complex Leaves and Instability for Harmonic Foliations

In this paper, we study stability for harmonic foliations on locally conformal Kähler manifolds with complex leaves. We also discuss instability for harmonic foliations on compact submanifolds immersed in Euclidean spaces and compact homogeneous spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012